
Report for bioreactor project

Darren Roos

CML 732

2019-11-16



Report for bioreactor project

Darren Roos
u15041604

Department of Chemical Engineering

University of Pretoria

CML 732

2019-11-16



Report for bioreactor project

Abstract

The instrumentation, modelling and control of a bioreactor that produces fumaric acid

are investigated. It is found that the pH probe drifts at a rate of 0.013 75 h−1 and

that it has a time constant of around 130 s. The delta—sigma pulse width modulator

for the temperature controller is found to have better characteristic than the current

implementation. A non-linear model is developed to fit data with and without ethanol

production. State estimation is used to drastically improve the ability to control the

reactor by allowing the system to use information from the HPLC.
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1 Background

This report documents the investigation into a bioreactor. The bioreactor produces fu-

maric acid through the aerobic fermentation of glucose by Rhizopus oryzae. The aims of

the project are to: characterise the pH probe that is used in the reactor; investigate the

performance of an alternative pulse width modulator for use in the temperature control

system; develop a framework for the simulation, control and state estimation of the re-

actor in Python; develop a non-linear of model of the process that is sufficient for state

estimation in control; and implement state estimation to provide better controllability of

the system.

1.1 System overview

There are two phases in the process: a growth phase and production phase. During the

growth phase, the fungus is grown on a PVC pipe within the cylindrical fermentation

vessel (see Figure 1) with high concentrations of urea in a batch process. Thereafter, in

the production phase, the vessel is rinsed out and continuous fermentation begins with

lower concentrations of urea. Ethanol is an unwanted by-product that is formed, but its

concentration is reduced by sparging with CO2 (Naude, 2018).

Mixing in the vessel is caused by the continuous recycling of the reactor fluid from the base

to the head of the reactor and as such the system is modelled as a CSTR. The direction

of the recycle switches periodically to prevent the build-up of fungus and subsequent

clogging of the pump. Volume is kept constant through the use of an overflow. The

overflow’s fumaric acid, glucose and ethanol concentrations is measured. The fermenter

is dosed with small amounts of urea during the fermentation since it has been found by

Naude (2018) that this increases the rate of fumaric acid and ethanol production.

Temperature and pH are measured on the recycle line. Characteristics of the pH probe,

like its accuracy, drift, and response curve, are unknown. Knowing these qualities gives

an indication of the amount of confidence one should have in a reading. These are

especially important when it comes to pH measurements because of the logarithmically

scaled degree of sensitivity required by the instrument, and the tendency of measuring

devices to drift (McMillan, 1984). pH in the reactor can be increased or decreased by

dosing with a 10 mol L−1 NaOH or 10 mol L−1 HCl mixture, respectively.
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Figure 1: Basic diagram of the bioreactor indicating the important parts

The fermenter is placed on top of a hot plate in order to maintain the temperature.

Unfortunately, the energy supplied to the element can only be manipulated by rotating a

physical knob on the device and the control system can only turn the device on or off. As

a result of this, the PID controller’s output is passed thorough a pulse width modulator

to the devices output.

According to Du and Robertson (2017), a pulse width modulator seeks to approximate

an analog signal f(t) using a digital signal. It outputs a binary signal b(t) that takes on

a high value Qmax or a low value Qmin. For the sake of the approximation, it is important

that:

Qmin ≤ f(t) ≤ Qmax ∀t (1)

For a given period P (not necessarily fixed), the PWM outputs Qmax for the first DP

time and Qmin for the rest of the (1 − D)P time, where D is the duty. During every

period PWM seeks to find the duty such that:
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1

P

∫ t+P

t

f(t)dt =
1

P

∫ t+P

t

b(t)dt

=
1

P

[∫ t+DP

t

Qmax +

∫ t+P

t+DP

Qmindt

]
= DQmax + (1−D)Qmin

(2)

Stated more concretely, pulse width modulators output binary pulse streams such that

width of the pulses cause the average value/power to approximate a desired analogue

curve. It is desired to investigate the current pulse width modulation style used by the

instrumentation as well as to research alternatives.

1.2 State estimation

The concentrations of fumaric acid, ethanol and glucose are not available on a continuous

basis, but rather the reactor is sampled periodically (about once every 8-16 hours) and

a High Performance Liquid Chromatographer (HPLC) is used to determine the concen-

trations. This leads to difficulties in implementing a control system which would not be

able to react fast enough given the infrequent measurements.

A solution to this is to use state estimation as part of the control scheme (Hadj-Sadok and

Gouze, 2001). State estimation can predict the hidden state of the concentrations, which

can then be updated as samples come in from the HPLC. To do the state estimation a

reliable model of the system is needed. The system is assumed has the form:

ẋ = f(x, u) + ωx

y = g(x, u) + ωy
(3)

where ωx is the state noise and ωy is the measurement noise, f is the state transition

function, and g is the state observation function. Both are assumed to be Gaussian with

covariances Qx and Qy.

The state transition function is used to predict the future state of the system given the

current state and input (Farina et al., 2016). The state observation function is used to

determine the predicted system’s measurable outputs given the current state (Wilken,

2015).

The state estimator that is used in this project is an Unscented Kalman Filter (UKF). A

UKF is ideal because it works with non-linear functions and does not require gradient or

Hessian information about the transition and observation functions. It works by sampling
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the original Gaussian distribution with weighted samples called sigma points. The sigma

points are chosen according to a version of scaled sigma points proposed by Merwe and

Wan (2003). The point locations are given by:

χ0 = µ

χi = µ+
√

(L+ λ)P ∀i = 1 . . . L

χj = µ−
√

(L+ λ)P ∀j = L+ 1 . . . 2L

λ = α2(L+ κ)− L

(4)

where α determines the spread of the points, κ is a parameter that scales the points

towards the mean, and L is the dimensionality of state space. Merwe and Wan (2003)

proposed the weights as:

ω0 =
λ

L+ λ

ωi =
1

2(L+ λ)
∀i = 1 . . . 2L

(5)

The sigma points are then passed through the nonlinear transition function. The new

Gaussian distribution is fitted to the transformed sigma points.

1.3 Software

Thus far all the aims stated above have been given the relevant background, motiva-

tion and theory, except the aim regarding the development of a software framework for

simulation, modelling, control and state estimation. This section aims to remedy this.

A well-developed software framework should allow the user to easily interact with the

program, and should make it easy to code a new/replacement part. For example, one

of the aims in this project is to make it easy for a different model of the system to be

used. Object Oriented Programming (OOP) makes this almost trivial through its use of

encapsulation and interfaces.

An object’s interface is essentially how other programmers interact with it. If all objects

that represent models of the system have the same methods with the same call signatures,

then it becomes really easy to switch them out.

This kind of design is very useful in projects like those in CML, because it allows the

next student to very easily improve on the work already done without having to redo all

the parts.

4



2 Instrumentation: characterisation of the pH probe

pH measurement in this system is both important and difficult. It is important because

the bacteria cannot live if the pH is too high or too low, and it is difficult because the

experiments are long (often on the order of 200 h). The long experiment times leads to

the problem of drift. Drift is the change in the measured value of a constant quantity

over time. For example, if you have an oven at a constant true temperature of 100 ◦C

and the temperature probe initially reads the true value, but in a week reads a couple of

degrees off, then the measurement has drifted. Measurement drift in pH probes is caused

by ions ”leaking” into the reference electrode.

The probe is calibrated using a two point method with a pH 4 and a pH 7 buffer solution.

The device then assumes a linear relationship between the pH and the measured mV

value. This is illustrated in Figure 2.

Figure 2: 2-point pH calibration

Once calibrated, the drift of the probe is then measured using the following method:

1. At t = 0: Measure the pH of four buffer solutions: 2, 4, 7 and 11 pH

2. Leave the probe in the pH 4 buffer solution. This is done to replicate the conditions

of the bioreactor which runs at pH 5

3. At t = 3 h, 8 h, and 24 h repeat the measurements of the four buffer solutions

Doing this and fitting linear drift curves gives Figure 3. The average drift is 0.013 75 h−1

which means that the drift over a 200 h run would be around 2.75 pH! However, the

experiments only ran for 24 h and so it is unclear if the trend continues to be linear.
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Figure 3: Drift curves for four pH values. The points of each data set has had its true value
subtracted from it to make the data more comparable.

It is also important to determine the accuracy and linearity of probe. The accuracy is

how close the probe measures to the true value of the system. Linearity refers to how

closely the probe measures to the linear calibration curve. These characteristics can be

determined by looking at the t = 0 values of the drift data.

The percentage error of this data is shown in Figure 4. Accuracy of the measurements is

very good with the maximum error being 0.45 %. The measurement is also linear across

the pH calibration range. This is seen by the fact that the errors for each pH is very low

given that only two point were used for the linear calibration curve.
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Figure 4: Percentage error of measured pH for calibrated probe

The dynamic characteristics of the pH probe need to be known as well because they

affect how we should use online measurements. To this end, the time constant of the

probe is determined. The probe’s response is measured after calibrating the probe and

then placing the probe into a buffer solution and sampling the response every second.

This is done for pH 4 and 7. The results are shown in Figure 5. The estimated time

constant is on the order or 130 s which is sufficiently fast enough since the pH of the

reactor changes very slowly due to only small amount of fumaric acid being produced at

a time (approximately 2.78× 10−5 g s−1 as one can see later in Figure 8).
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Figure 5: Dynamic response of the pH probe to step excitements
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3 Instrumentation: pulse width modulator

For this subtask, the aim is to investigate the performance of the current pulse width

modulator in use for the temperature controller against another pulse width modulator

design.

The current PWM operates by selecting a period P and sampling the desired power

output Q at the start of the period. It then selects the duty D such that the average

power delivered for the period is the same as Q.

The alternate PWM is a delta—sigma design. It works by integrating the error between

the desired signal and the binary signal. When the magnitude of the error surpasses some

tolerance value E, the binary signal changes state.

3.1 Experimental set-up

Both modulators are given the input signal

u(t) =
1

2
+

1

4
sin

(
t

10

)
(6)

Performance is characterised by the squared error of the time averaged power of the

output of the analog input u and the binary output q:

R =

∫ ∞
0

[
1

T

∫ T

0

(u(t)− q(t))2 dt
]
dT (7)

The performance is also weighted by the average time between state changes in the binary

signal. Thus, in order for the test to be fair, the value of P for the current PWM and the

value of E of the delta—sigma PWM should be chosen such that both signals have similar

numbers of state changes per second. Figure 6 shows an example of such a run. The R

values are 11.84 and 3.03 for the current and delta—sigma modulators, respectively.
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Figure 6: A single run of both modulators. P = 38 and E = 4. Both have a frequency of
switching of 0.053 Hz

3.2 Results and discussion

Values for R and the state change frequency are found for several values of P and E.

The result is shown in Figure 7. The figure makes it very clear that the delta—sigma

modulator outperforms the current modulator at every frequency.

Figure 6 gives an indication as to why this is the case. One can see that the delta—sigma

modulator’s output is more regular (which is what one would expect given that the input

signal is cyclic), and that it’s ”response” is faster.
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4 Modelling

The model’s shape for the system is developed for the data shown in Figure 8 and Figure 9,

however, the parameters are chosen based only on the data in Figure 8 and the data in

Figure 9 is used for comparison. It is important to note that the two sets of data are

from completely different operating regimes. The data in Figure 8 are from a run where

there is sufficient glucose for ethanol production, while the data in Figure 9 shows a run

where there is insufficient glucose for ethanol production.
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Figure 8: HPLC samples for bioreactor run with ethanol production
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Figure 9: HPLC samples for bioreactor run without ethanol production

4.1 Model equations

Equations #1 through #9 in Table 1 1 represent ordinary CSTR mole balances with the

relevant terms set to zero for glucose, biomass, fumaric acid, ethanol, carbon dioxide,

oxygen, nitrogen, hydrochloric acid and sodium hydroxide, respectively. Equations #12

and #13 are the volume balances (density is assumed constant due to low concentrations)

for the liquid and gas phases, respectively. Equations #10 and #11 represent CSTR mole

balances for modelled enzymes.

Enzyme Y represents the enzyme that exists within the bacteria from the growth phase

that continues ethanol production. This enzyme causes the initial rise in ethanol con-

centration in both the run that has sufficient glucose for ethanol production and the one

that does not. This is represented by the rate seen in Equation #35 that depends on the

1We will use #n to represent equations from Table 1
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concentration of Y. Enzyme Z is an enzyme that helps model the conversion of ethanol

to fumaric acid. It causes the decrease in ethanol production, however, it is important

to note that the bacteria compensates for the conversion of fumaric acid from ethanol by

producing less fumaric acid from glucose. This is represented by the rate seen in Equation

#37 that depends on the concentration of Z. The normal increase of ethanol due to the

presence of glucose is mathematically described in Equation #36. It is important to note

that this mechanism is not fully understood and so this aspect of the model is built to

fit the data rather than by using first principles.

Equations #14 through #24 represent the equations relating the concentration to the

mole values. An important aspect to note in the concentrations is in the biomass concen-

tration. There are unknown amounts of biomass in the reactor from the growth phase.

There is no way to measure the amount of biomass until after the entire run has com-

pleted. This is because measurement requires drying the bacteria which kills them. Thus,

when one runs the model simultaneously with a run one must guess/infer the biomass

(more on this in the state estimation section).

Five bacterial reactions are modelled, excluding the enzymatic reaction that converts

ethanol to fumaric acid for now. These reactions are seen in Equation 8. The first two

reactions (rFA,f and rE,f ) are fermentation reactions and show the incomplete breakdown

of glucose to fermentation products. The third reaction (rTCA) condenses the relevant

reactants and product of the TCA cycle into a single reaction. The fourth reaction (rresp)

takes place in the mitochondria of the bacteria where cellular respiration occurs. The

last reaction (rbio) shows how the bacteria produces more of itself by combining smaller

molecules into larger ones that allow it to undergo mitosis.

Glucose + 2 CO2 + 6 ATP→ 2 FA + 2 H2O (Fermenetation)

Glucose→ 2 Ethanol + 2 CO2 + 2 ATP (Fermenetation)

Glucose→ 6 CO2 + 12 NADH + 4 ATP (TCA cycle)

NADH +
1

2
O2 →

7

3
ATP (Resperation)

Glucose + γ ATP→ 6 Biomass + αCO2 + β NADH (Anabolism)

(8)

The rates for rFA,f and rE,f are determined from concentration values as seen in Equations

#25 and #26, respectively. The CG

0.01+CG
term seen in both equations is known as a

Monod term, which is used to decrease the rate when the concentration of glucose s

low. The subtraction of the rz term in Equation #25 is done to take into account the

bacteria compensating for fumaric acid production from ethanol by reducing fumaric acid

13



production from glucose.

Using the rates of the reactions in Equation 8, one can determine the rates of the indi-

vidual components as is done for glucose, biomass, fumaric acid, ethanol, carbon dioxide

and oxygen in Equations #27 through #33, respectively.

Biomass requires energy to reproduce (as seen by rbio), but it also requires energy to

maintain its current state. This energy requirement θ can be dependent on the concen-

trations in the cell as seen in Equation #34. This together with Equation 8 gives rise to

the energy and redox balances in Equations #40 and #41.

The pH of the system adds more complexity and non-linearity to the system. This system

has the presence of a weak diprotic acid (fumaric acid), which makes pH calculations more

complex. In Equations #42 through #46, on sees the equilibrium relationships of the

different compounds. The normal format of an acid equilibrium equation is

K =
CH+CA−

CA,undissolved

CA = CA,undissolved + CA,dissolved

CA,dissolved = CA−

(9)

but for the sake of brevity, these have been combined where relevant into

K =
CH+CA−

CA − CA−
(10)

Equation #47 is the charge balance for the system. Because we are working in a neutral

charge system, the number of moles of positive and negative ions must be equal. Equation

#48 is the familiar pH calculation.

The energy effects of the system are taken into account in Equation #49. One can see a

directly proportional relationship between the heater input and the rate of change of the

temperature of the system. While in reality there are other delays (like the plate needing

to be heated up), these are considered negligible. There is also a directly proportional

relationship between the rate f change of the system’s temperature and the difference

between the system’s temperature and the surrounding temperature. This takes into

account convection heat losses and any minor conduction heat losses due to contact with

rubber pipes, etc.

14



Table 1: Model equations

# Equations Inputs Outputs Parameters

Mole balances

1) dNG

dt
= FG,inCG,in − FoutCG − rGCXV FG,in, CG,in, Fout NG, CG, rG, CX , V

2) dNX

dt
= rXCXV NX , rX

3) dNFA

dt
= −FoutCFA + rFACXV NFA, CFA, rFA

4) dNE

dt
= −FoutCE + rECXV NE, CE, rE

5)
dNCO2

dt
= FCO2,inCCO2,in − Fout,gCCO2 + rCO2CXV FCO2,in, CCO2,in, Fout,g NCO2 , CCO2 , rCO2

6)
dNO2

dt
= FO2,inCO2,in − Fout,gCO2 − rO2CXV FO2,in, CO2,in NO2 , CO2 , rO2

7) dNN

dt
= FN,inCN,in − FoutCN − δrXCXV FN,in, CN,in NN , CN δ

8) dNHCl

dt
= −FoutCHCl NHCl, CHCl

9) dNNaOH

dt
= FNaOH,inCNaOH,in − FoutCNaOH FNaOH, CNaOH,in NNaOH, CNaOH

10) dNz

dt
= −190 ∗ rzCXV Nz, rz

11) dNy

dt
= −95 ∗ ryCXV Ny, ry

12) dV
dt

= FG,in + FN,in + FM,in + FNaOH,in − Fout FM,in

13) dVg
dt

= FCO2,in + FO2,in − Fout,g Vg
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# Equations Inputs Outputs Parameters

Concentrations

14) CG = NG

V

15) CX = NX

V

16) CFA = NFA

V

17) CE = NE

V

18) CHCl = NHCl

V

19) CNaOH = NNaOH

V

20) Cz = Nz

V
Cz

21) Cy = Ny

V
Cy

22) CN = NN

V

23) CCO2 =
NCO2

Vg

24) CO2 =
NO2

Vg

Basic rates

25) rFA,f = 15× 10−3 CG

0.01+CG
− 0.5rZ rFA,f

26) rE,f = 15× 10−3 CG

0.01+CG
− 0.5rZ rE,f

27) rbio = kbCN rbio kb

28) rG = −rFA,f − rTCA − rE,f − rbio rTCA

29) rX = 6rbio

30) rFA = 2(rFA,f + 0.5rz)

31) rE = (r1i + r2i + rd)(
CG

0.01+CG
) r1ir2i, rd

32) rCO2 = −2rFA,f + 6rTCA + 2rE,f + αrbio α

33) rO2 = 0.5rresp rresp

34) rθ,f = (θ)( CG

1× 10−3+CG
) rθ,f θ
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# Equations Inputs Outputs Parameters

Enzymatic rates

35) r1i = k1Cy k1

36) r2i = k2 k2

37) rd = k3Cz k3

38) rz = rd + r2i

39) ry = rd + r1i

ATP Balance

40) rFA,f + γrbio + rθ,f = 4rTCA + 7
3
rresp + 2rE,f γ

NADH Balance

41) 12rTCA + βrbio = rresp β

pH calculations

42) KFA =
CH+CFA−
CFA−CFA−

CH+ , CFA− KFA

43) KFA− =
CH+CFA2−
CFA−

CFA2− KFA−

44) KHCl =
CH+CCl−
CHCl−CCl−

CCl− KHCl

45) KNaOH =
CNa+COH−
CNaOH−CNa+

CNa+ , COH− KNaOH

46) Kw = CH+COH− Kw

47) CH+ + CNa+ = CFA−CFA2− + CCl− + COH−

48) pH = − logCH+ pH

Temperature calculations

49) dT
dt

= 4.5Q− 0.25(T − Tamb) Q, Tamb T

17



4.2 Model fits

Once the dynamics have been modelled, the next step is to fit the parameters to the data.

This is done by looking up realistic values for parameters that have them: α, θ, γ and β

all have values taken from our third year bioreaction engineering course. The values for

the equilibrium constants are just physical constants and so were looked up. The values

for the ki parameters were tuned to give the desired shapes. Final values that are used

can be seen in Table 2.

Table 2: Parameters for nonlinear model

Parameter Value

δ 0.2

α 0.1

θ 0.1 mol ATP
mol X

k1 3.1304× 10−3

k2 1.1598× 10−3

k3 3.2609× 10−3

γ 1.8 mol ATP
mol bio

β 0.1 mol NADH
mol bio

pKFA -3.03

pKFA− 4.44

pKHCl 8.08

pKNaOH 0.56

pKw -14

Figure 10 shows the response of the model to the input data that produced the HPLC

samples shown. The curve fits the fumaric acid and ethanol data very well. It does not

provide a very good fit of the glucose data, but does have the general shape correct. It is

very difficult to get very accurate fits because the flux model of the bacteria is unknown.

However, the model is good enough to be used for state estimation and control.
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Figure 10: Model and HPLC samples for bioreactor run with ethanol production

The model is compared against the data from the case that has no ethanol production.

Results are seen in Figure 11. The model fits the fumaric acid data very well, but does

not predict the lack of ethanol production. This is because the model does not take into

account the different regimes of the bacteria. At the time of writing, Reuben Swart (in

the Department of Chemical Engineering), is doing his Master’s on the concentration of

glucose at which the bacteria stop producing ethanol. The model does still predict the

general shape of the glucose curve again. From the above results, the model can be seen

to be imperfect, but good enough for control purposes.
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Figure 11: Model and HPLC samples for bioreactor run without ethanol production
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5 Control: state estimation

Now that we have a model of the system, we can proceed to build the state estimator for

use in the control system. An Unscented Kalman Filter (UKF) works as shown in Figure

12. It selects a set of points and weights (together known as sigma points) to approximate

the current Gaussian. Then these points are put through the state transition function

f (g in the figure) and used to approximate the new Gaussian. It is important to note

that the red line of the actual Gaussian is unknown and so one uses the sigma points to

predict it.

Figure 12: Visual representation of how the UKF works (Chadha, 2018)

As mentioned before, the sigma points are chosen according to a version of scaled sigma

points proposed by Merwe and Wan (2003). Their method is shown in Equation 4 and

Equation 5.

However, they did not realise that for any α ≤ 1, their weights no longer work since they

give negative weights for ω0. As far as the author of this document could tell, this is not

stated anywhere by the original authors. Thus, for this work (where it is required that

α ≤ 1), the weights are changed to be the unscaled versions:

ω0 =
κ

L+ κ

ωi =
1

2(L+ κ)
∀i = 1 . . . 2L

(11)

The filter continues in from the sigma points into the familiar pattern of a prediction

step and an update step. The prediction step us used to estimate the future values of the

states using the present values. It works by mapping the sigma points χi into the updated

space by means of the state transition function f(χi). The mean and covariance of the
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new points is calculated. It is important to remember to add the uncertainty created by

the state/model noise. This process is captured mathematically as

Zi = f(χi, uk+1)

µk+1|k =
2n∑
i=0

ωiZi

Qk+1|k = Qx +
2n∑
i=0

ωi(Zi − µk+1)(Zi − µk+1)
T

(12)

The updated step proceeds by moving the sigma points into the measurement space:

Ẑi = g(χi, uk+1)

µ̂k+1|k =
2n∑
i=0

ωigẐi

Q̂k+1|k = Qy +
2n∑
i=0

ωi(Ẑi − µ̂k+1|k)(Ẑi − µ̂k+1|k)
T

(13)

In order to calculate prediction error, we need to calculate the cross-correlation between

sigma points in state space and sigma points in the measurement space:

R̂k+1|k =
2n∑
i=0

ωi(χi − µk+1|k)(Ẑi − µ̂k+1|k)
T (14)

This is then used to construct the Kalman gain

K = R̂k+1|kQ̂
−1
k+1|k (15)

which is used for the completion of the update step:

µk+1|k+1 = µk+1|k +K(z − µ̂k+1|k)

Qk+1|k+1 = (I −KR̂k+1|k)Qk+1|k
(16)

where z is the measurement/observation. A working, tested and robust UKF implemen-

tation in a Python package called filterpy is used in the software. An adjusted class for

the updated sigma point method is implemented using the filterpy version as a starting

point.
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All states in the model in Table 1 are predicted. The measurement space consists of the

three HPLC concentrations of the glucose, fumaric acid and ethanol. It is important that

the covariances (and hence the standard deviations) of the state and measurement noise

is chosen well. These values should provide realistic insight into the uncertainty of these

values. These values are shown in Table 3.

Table 3: Covariance of state and measurement noises

State Covariances Standard deviation

NG 1× 10−6 0.18 g L−1

NX 1× 10−3 0.78 g L−1

NFA 1× 10−5 0.37 g L−1

NE 1× 10−4 0.46 g L−1

NCO2 1× 10−5 3.16× 10−3 mol L−1

NO2 1× 10−5 3.16× 10−3 mol L−1

NN 1× 10−5 0.19 g L−1

NHCl 1× 10−5 0.11 g L−1

NNaOH 1× 10−5 0.13 g L−1

NZ 1× 10−2 0.1 mol L−1

NY 1× 10−2 0.1 mol L−1

V 1× 10−5 3.16× 10−3 L

Vg 1× 10−5 3.16× 10−3 L

T 1× 10−1 0.32 ◦C

Measurement Covariance Standard deviation

NG 1× 10−12 1.8× 10−4 g L−1

NFA 1× 10−12 1.16× 10−4 g L−1

NE 1× 10−12 4.6× 10−5 g L−1

The value of the glucose content as seen in Figure 8 and Figure 9 is around 0.5 g L−1,

thus a standard deviation of 0.18 g L−1 aptly expresses the uncertainty we see in Figure

11. Similar arguments are made for the fumaric acid and ethanol values of 0.78 g L−1 and

0.37 g L−1, respectively. The amount of biomass in most runs varies between 0.8 g L−1

and 2 g L−1. Since we are very uncertain of the value in this range a value of 0.78 g L−1

is appropriate. The low level of uncertainty expressed in the enzyme values are due to

the fact that they were tuned to give good fits, and so we are confidant in those values.

Similarly, the volumes of the gas and liquid phases remain more or less constant, and so

we are not uncertain about their values. The measurement standard deviations are small

because we assume that they are very accurate and contain very little noise.
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Three very important aspects regarding the implementation of the state estimator in this

system: firstly, the prediction step needs to be done frequently so that an online estimate

exists; secondly, the update steps do not happen ar regular intervals; and thirdly, when

an update occurs it contains information about the system some time in the past due to

the delay between sampling the system and receiving the HPLC results.

Fortunately, the design of the UKF in filterpy easily handles the first two cases by

allowing the user to call the predict and update steps independently. The third case is

solved by storing the values of µk|k and Qk|k, and then when an update occurs, the user

can enter the time at which the sample was taken. The software then backdates the

update to the correct time by resetting the state estimator’s µk|k and Qk|k at the time of

the sample and performs the update. It then performs all the necessary prediction steps

up until the current time.

The results of the runs with and without ethanol production with state estimation are

shown in Figure 13 and Figure 14, respectively. The addition of state estimation makes

a huge difference to the predictions in the run without ethanol production. It is clear

that using the state estimated mean in a controller would be much better than using the

model.
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Figure 13: Model, HPLC samples and 90 % confidence intervals of state estimation average for
bioreactor run with ethanol production. The solid lines represent the boundaries of
the confidence region and the dotted lines represent the model predictions without
any state estimation. The dotdash lines represent the mean of the state estimator.
In the enzyme graph the CZ and CY confidence lines are distinguished in the
legend.
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Figure 14: Model, HPLC samples and 90 % confidence intervals of state estimation average for
bioreactor run without ethanol production. The solid lines represent the bound-
aries of the confidence region and the dotted lines represent the model predictions
without any state estimation. The dotdash lines represent the mean of the state
estimator. In the enzyme graph the CZ and CY confidence lines are distinguished
in the legend.
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6 Software framework

This section aims to give a brief, high-level overview of the software developed for this

project. Figure 15 shows the relationships in the code diagrammatically. The central

element is the simulation code. It serves as the main hub for information by storing and

providing data that is relevant for the time series data. It receives information about

inputs which it passes to the model. It takes the outputs from the model and passes

them to the state estimation system. Finally, it also sends its data to plotting code for

display to the user.

It is important ot note the mirroring of the fake and Labview code. The fake code is

used to test that the system is working and the Labview code is used to interface with

the actual system through Labview. The state updater and input objects have the same

interface which make it easy to change them out for one another without changing the

other code at all.

The state updaters serve to allow for the backdating of HPLC data and perform the

update step in the state estimation process. The sigma point object provides sigma point

locations and weights to the state estimator. The state estimator class performs the

prediction steps in the state estimation system.

The model object contains the non-linear model of the system that is found in Table

1. It interfaces with the simulation system to receive inputs from the input objects and

returns outputs that are used in state estimation and plotting.

There are two methods for plotting the data: online or offline. Online plotting is a

vital aspect because one wants to be able to see live results of the simulation and state

estimation. However, when testing the system the offline plotting code is much faster.
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Figure 15: High level overview of the developed software
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7 Conclusions and future work

This project has met its aims: drift, accuracy, linearity and dynamics of the pH probe

have been found. More work can be done to repeat these experiments and perform longer

drift experiments. There is also much future work to be done in the characterisation of

the pumps, temperature probe and gas analysers.

The current pulse width modulator of the system was compared to an alternative and it

was found that the pulse width modulator can be improved. These improvements were

then implemented.

A non-linear model of the system was developed and used for state estimation. Future

work would be to improve the model by researching the exact metabolic pathways (flux

model) and enzymes that are at work in the model. Another method would be to char-

acterise the different regimes of the bacteria and look at creating a growth model and a

no ethanol model.

The state estimation system drastically improves the predicted outputs and future work

would look into a control philosophy for the reactor: what needs to be controlled and

how to control it. This posses many challenges since a significantly better understanding

of the bacteria would be needed before this can occur.

The software that was developed allows for easy upgrading and replacement of the dif-

ferent parts. Future work should include translating the current Labview interface to

Python as this would allow more advanced techniques to be applied very simply as the

current Labview code is messy and difficult to maintain.
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